

 1 / 7 http://www.jennifersoft.com

JENNIFER Technical Article

Version: JENNIFER v2.5 and Above
Date: 2009-04-30
Author: S.J. Kim

JENNIFER’s Special Feature

X-View

 2 / 7 http://www.jennifersoft.com

1 Why Monitor Service Response Time by Transaction?

Monitor the response time of all transactions individually and focus on the transactions that are
having performance problem and analyze the profiles

Application Performance Management is a process of measuring the performance of application
services, then analyzing the collected data in order to progressively improve the performance of
said application. Application performance is measured by the observing response time of the
services and amount of system resource used by the services in a specific time interval. In the center
of APM is profiling data for the application services, which is the detailed log or record of what was
processed in the application.

What is Service?

The term Service, if used loosely, can be synonymous to term “Application”. In the world of Java
EE Application, Service is an application module that is prepared to receive and process HTTP
request from an end-user. For example, if a user requested the website www.website.com, the
Servlet or JSP that resides in the server is “Service” and the name of the service is the URL. On the
other hand, the scheduler that runs in the background is not considered as service. Thus, service
performance is typically measured by observing the number of hits per URL and response time
associated with each of them.

Common problem with measuring performance is the quantity of services. In a typical enterprise-
class application, there can be hundreds or thousands of service, each constantly and continuously
processing user requests. Thus the biggest concern about service performance measurement is how
to best collect, store, and express the data.

A standard approach is Grouping-by-Task. Service names or processes that completed service is
grouped by tasks or jobs and number of performance services and average response time of services
are calculated, and displayed in graphs and tables. However, Service grouping can often lead to
dangerous trap of averaging. If one or few critical services are suffering from performance
problems, the problem can be buried under data from averages of rest of the services.

To combat this problem, some administrators started monitoring mission critical services
individually and measure performance of remaining services in groups, but still there is remains
problem with averages and also administrator much choose the specific services to monitor by
predicting which services will have performance problem.

No matter how the services are grouped, the problem of averages will persist. Even within the same
application, some service can be fast and some slow depending on special circumstance such as
system status or logic problem

 3 / 7 http://www.jennifersoft.com

When performing simple reporting for SLA or status checking purposes, average value is sufficient,
but when collecting and analyzing service data for the purpose of optimizing and improving
application performance, all transactions must be monitored and measured individually.

If the specific transaction cannot be identified, the time and resource it takes to identify troubled
service and finding root cause can be long and tedious.

Problem with monitoring large quantity of service transaction data is how to organize and view
them in a understandable way. Using a traditional line graph is only good for average data, thus
useless in monitoring mass quantities. Only way to display them effectively is to use scatter-plot
graphs. When expressed in scatter graph, administrator can see overall status of service transaction
in one graph without loosing the granularity of the performance data. Take a look at the example of
how performance data for individual transaction can be displayed in scatter-plot graph format.

The Y-axis represents the response time of individual transaction. X-axis represent the time when
each transaction has finished being processed. Using this graphic format, administrator can
intuitively perceive the status of all transaction individually and quickly identify specific service
transactions that are suffering from performance problems.

 4 / 7 http://www.jennifersoft.com

The service transactions marked with boxes are predicted to be experiencing performance problem
and need to be analyzed further.

Once problematic transactions are identified, administrator observes the resource usage data and
profiling data for each selected transaction to find out the root-cause of the performance problem
and resolve the performance issue. Linking the transaction in the scatter graph and associated
performance data such as resource usage and profiling data and critical for application performance
management. A tool that can do this quickly and without high overhead to the monitored system is
of great help in managing application performance.

2 Patterns in the Scatter Graph

 5 / 7 http://www.jennifersoft.com

Another advantage a scatter graph can bring is that the performance problems often show itself as
patterns in the scatter graph. Different patterns in the graph often indicate specific performance
problem and experienced administrator can often identify the performance problem simply by
observing for specific patterns formed in the scatter graph.

2.1 Vertical or Spike pattern.

An application requires many different type of resource to run and the relationship between one
resource and another is also very complicated. Typically, physical resources, such as CPU and
Memory, are wrapped by software module and then wrapped resources are used by the application.
When one or more of the resources that application needs is unavailable, the application is thrown
into stat of “LOCK”. For example, a database lock occurs when the connection pool in the database
is all occupied. When a LOCK occurs, all transaction that requires the said resource goes into
“Waiting” state. One by one, transaction action take longer time to finish while waiting for the
necessary resource to be available. Once the resource becomes available, all transaction will at once
be processed, forming a vertical or spike-like pattern in the scatter graph.

When administrator find spike pattern in the scatter graph, he/she can look through the resource and
profiling data of transaction in the spike and analyzing to identify which resource’s shortage was
responsible for LOCK state. By increasing the available resource or adjusting how they are
allocated, administer can quickly removed the cause of delayed service.

If the transactions in the spike pattern all originated form one application server, the shortage of
resource likely cam from internal source. If they came from multiple different application servers,
then the shortage likely came from external source unless different servers suffer from exactly
name resource problem (which is less probable).

If transactions in the pattern were originated from same service, the shortage is in one of the
resources specifically used by that service. If many different services are identified, then the
resource shared in common is the culprit.

 6 / 7 http://www.jennifersoft.com

2.2 Wave Pattern

Not all resource shortage may result in a LOCK state.

Often, resource shortage may result in phenomenon where the response time of services fluctuates
repeatedly. See the below picture. As you can see, shortage in resource has resulting in a wave like
pattern in the scatter graph.

By analyzing the transaction in both peaks of the wave, administrator can identify the common
resource that is causing fluctuation in response time.

For most standard OS monitoring tools, resources are often measure as percentage used, from 0% to
100% from the available pool. Problem here is that this way of measuring only shows supply of
resource but not demand. For example, a given application’s throughput requires 300% of CPU
utilization that a server can provide. Only when that server increases its CPU resource by 3x, the
application can run properly without experiencing performance problem. According to the OS
monitoring, CPU utilization will always show 100%, but it cannot show how much more is needed
in order to fulfill the application’s resource requirement.

2.3 Horizontal or Flat-line Pattern.

Administrator may put a timeout setting for any given processes to prevent the LOCK or delay in
service. This timeout setting is useful, but ill-configured timeout setting can cause trouble when
they are set too short.

 7 / 7 http://www.jennifersoft.com

These ill-configured timeout setting can be seen in a response time scatter graph, via flat-line
pattern. Take a look at the above picture. You can see 3 different instances of patterns. Line A has
formed after initial timeout setting set at 10 seconds. Then line B forms, these are same transaction
that formed line A restarted, then timed out after another seconds. Line C is formed by another
group of transactions which timed out at 5.5 seconds. Once the resource problem is resolved, all
transaction returns to normal state shown in area D.

As we have seen in this article, resolving performance problem is often game of finding
commonality between failing services. Scatter graph provides administrator a easy and powerful
way to organize, perceive, and manage performance problem in a mass of service transactions.

