JENNTFER

JENNI/FERSOFT,Inc

Collection Monitoring

Many web applications are using
java collection (vector, hashtable
etc...) to manage large amount
of data. When Java collection
fails to properly create and delete
objects or cannot properly
manage element insert logic or
delete logic, it may lead to Out of
Memory errors.

JENNIFER’s Collection Monitoring
traces all Java collection object’s
creation and deletion activity
within heap memory, allowing
system administrator to easily
trace the cause of the OOM
errors.

www.jennifersoft.com

Case Study:

Out of Memory (OOM) Detection
and Analysis

Background

“A" System was developed as portal system for “M" City Hall employee
for use of daily operations, and is accessed by more than 4,500 users. "A"
System is a large scale system with max concurrent users count of approxi-
mately 5,000 users and hourly visiting users count is approximately 10,000
users per hour.

“A" System is experiencing performance problem where Out-of-Memory
error is occurring randomly and Full Garbage-Collection (GC) is executed
frequently, leading to frequent system downtime.

System administrator has narrow down the cause of the performance
problem to one of the newly added Groupware servers and attempted to
identify the cause of performance problem but neither the administrator
nor Groupware vendor could not find the cause of performance problem.

Analysis with JENNIFER

22 AFE (Heap) HIE | AHSERMB) [e= =1

13

non

A0

200

——="=

00 07 02 0% 04 05 0F 07 0% 09 10 77 12 18 1215 1677 1% 16 20 21 28 23 8-

[Pic 1: Java Heap Memory Monitoring]

After JENNIFER was installed, system administrator observed that Java
heap memory usage increased suddenly approximately every 3 hours,
leading to OOM errors and system downtime (See above graph).

To investigate the problem further, system administrator enabled
JENNIFER’s Collection Monitoring capability to gather more in-depth

information.

2006-08-05/11:50:48 [popup] [snapshot] [stack clear] [accept new stack] [Garbage Collectar]
NO. CREATED_DATE TOTAL DELTA COLLECTION NAME Hash Code STACK

[0000) Z00GOGO5M01413 3560 java.util HashMap 0%8087403 notacceptable [atcepl]

[0001] 200BGOSHNZ346 5010 3840 Javd Ul EamorrTyne oo e ip common Ger

[0002] 20060805M11058 1,360 Java.utilHag at java.util Vector.add{java.lang.Ohject) (Vector.java7 31) (pe 47)
[0003] 200B0GOS11058 1,360 Java.uiil Had At tom.hs.hip common. Que it dava lang. Bting,java lang.String java.sol. Connection,inf) (Query.java:141) (pe 249)
at corm hs hip sommon Guery, = init = (ava lang Sting,java.sql connection,int) (Queryjavat 21) (oo 6

Ut A eyt atjeus_ispwork_jsp._org_wiew._403_DeptUserlist_jspService (_403_DeptUserListjava:230) (pc §27)
[0005) 2000605114038 1,390 Java.utl Arrd atjeus. servletjsp Hitp) spBase.service (HitaspBase [ava54) (pc)

[0006] 2006060514316 1,030 Java.util Arry 3tjavaz senvlethtip HitpServet_service (pc 101)

160877 30060AASH 14426 1,400 i atjavax, serviet hitn HitnServiet servicedavai servlet SemletRequestiavax servlet SenletResnonse) (po 45)

atjeus.servietjsp.lspSerletirapper executsServlet (JspServletrappsr java 52) (pc 27)
(0008 2008060514507 4,380 iava UL AT ot jous servlet filter FilterChainimpl doFilter (FilterChainimpl java:72) (pe 137)

[0009) 0060605114515 1,030 java.utilAreg at jeus seniet filter LoginFilter doFiter {LoginFiter java:T1) (pc 41}

[0010] 20060605114525 1,040 JavautilArg at jeus.servietfilter Filtenrapper.dofilter (FilterWrapper java 29) (pc 13)
atieus.senletfiter FilterChainimpl doFilter (FilterChainimepl java:63) (pc 42)

[0011] 2006060514526 1,040 Java LAY o115 cervietengine Servietirapper execute (Senetirapnet java:118) (pc 45)

[0B12] 2006060514600 1,030 iava.util Arrg af jeus.senvietengineWeblobReguestProcessormn pveblobRequestProcessorjavall 36) (ue 208)
[0013] Z00BOGOS114648 1,390 Java. il ArrayList 087001 notaceeptable [accepl] Ihandydocsiconmimiicie_wait)sp
[0014] 20060605M114658 1,810 Java.util ArrayList 0x8570001 notacceptable [accepl] Ihandydocsiconthimlfreceipt_now.isp

[Pic 2 Collection Monitoring]

After Collection Monitoring feature was been enabled, objects were
carefully examine and system administrator observed that Vector Object
increased steadily over time. To identify the applications which are using
Vector Objects, stacktrace information was gathered from application and
administrator quickly found that Query.java program was using the
problematic vector objects.

Administrator took the stack trace information provided by JENNIFER and
consulted with Groupware’s engineer. After source-code analysis concern-
ing vector objects, vendor’s engineer discovered that vector object used
by Query.java which is responsible for data control was set in “static
mode” and “delete-element” logic was commented out. This meant that
after each time GC is executed, vector was not deleted and it remained in
memory. Also, element-delete logic was not enabled so number of
element object continued to increase, resulting in elements piling up in
memory, eventually leading to Our of Memory (OOM) errors.

Conclusion

It turned out that Groupware’s developer had changed vector object in
Query.java for debugging purposes then forgot to change the source-
code back. In this case, the mistake wouldn’t have been discovered in a
test environment; this type of problem would only surface during produc-
tion environment when there is multitude of requests being processed. To
prevent and quickly resolve such case of performance problem, a real-
time collection monitoring tool is necessary.

Key Message :

1. System “A" is experiencing

performance problem where Out
of Memory (OOM) error is occur-
ring randomly and GC is executed
frequently, leading to system
downtime, unable to maintain
normal operation.

. Out of Memory error is frequently
resolved with Real-time monitor-
ing of collection object with
tracing capability in production
environment.

Note

JENNIFER Review Downloads:
http://www.jennifersoft.com/docs/
apm-jennifer-installation--
file-download.htm!

JENNIFER Introduction Download:
http://www.jennifersoft.com/docs/
apm-jennifer-documents.htm/

